

CHI ZHANG

zhc@umich.edu ◇ drsteinkauz.github.io ◇ Ann Arbor, MI, US

EDUCATIONAL EXPERIENCE

University of Michigan

MS, Robotics

- GPA: 4.0/4.0
- Selected Courses: Optimization in Signal Process and Machine Learning (A), Mobile Robotics (A)

Ann Arbor, USA

08/2024 - present

Shanghai Jiao Tong University (SJTU)

Bachelor, Mechanical Engineering - Mathematics and Applied Mathematics

Shanghai, China

09/2020 - 06/2024

- GPA: 3.82/4.3(Major), 3.71/4.3(Overall)
- Related Courses: Stochastic Process (A+), Scientific Computation (A+), Multi-robot System and Control (A-)

RESEARCH INTEREST

Developing robot learning algorithms that can generalize across tasks, handle uncertainty, and remain reliable in real-world environments. Specific interests include multi-task and hierarchical robot learning, uncertainty-aware planning and control, long-horizon decision-making, and perception for dynamic and partially observable environments.

PUBLICATIONS

Morphology-Aware Graph Reinforcement Learning for Tensegrity Robot Locomotion

Chi Zhang, Mingrui Li, Wenzhe Tong, and Xiaonan Huang

submitted to IEEE Robotics and Automation Letters(RA-L), 2025, [arXiv:2510.26067](https://arxiv.org/abs/2510.26067)

SPOT: Sensing-augmented Trajectory Planning via Obstacle Threat Modeling

Chi Zhang*, Xian Huang*, and Wei Dong

submitted to IEEE/ASME Transactions on Mechatronics(T-MECH), 2025, [arXiv:2510.16308](https://arxiv.org/abs/2510.16308)

Tensegrity Robot Endcap-Ground Contact Estimation with Symmetry-aware Heterogeneous Neural Network

Wenzhe Tong*, Yicheng Jiang*, Chi Zhang, Maani Ghaffari, Xiaonan Huang

submitted to IEEE International Conference on Soft Robotics(RoboSoft), 2025

[* denotes Equal contribution]

SELECTED PROJECTS

Graph-based Reinforcement Learning for Tensegrity Robot Locomotion

Robotics, University of Michigan, Ann Arbor

09/2024 - 08/2025

Advisor: Xiaonan Huang, Assistant Professor

- Developed a reinforcement learning framework for tensegrity robots that leverages robot morphology to improve learning efficiency and locomotion performance.

- Proposed a morphology-aware policy architecture by designing a Graph Neural Network (GNN)-based actor that encodes the physical topology of tensegrity robots, capturing intrinsic coupling between components.
- Integrated the GNN actor into the Soft Actor-Critic (SAC) framework, achieving faster convergence, higher final rewards, and improved sample efficiency compared to MLP-based baselines.
- Trained policies for locomotion primitives including straight-line tracking and in-place turning, which transferred successfully from simulation to a physical 3-bar tensegrity robot.
- Implemented a full ROS-based control pipeline and conducted real-world experiments with Vicon motion capture, validating stable sim-to-real transfer under hardware noise and actuation variability.

Sensing-augmented Trajectory Planning via Obstacle Threat Modeling

School of Mechanical Engineering, SJTU

11/2023 - 11/2024

Advisor: Wei Dong, Associate Professor

- Developed a real-time observation-aware planning framework (SPOT: Sensing-augmented Planning via Obstacle Threat modeling) that enables UAVs with a single RGB-D camera to achieve dynamic obstacle avoidance in cluttered and uncertain environments.

- Proposed a Gaussian Process-based obstacle belief map that unifies the representation of recognized dynamic obstacles and potential unseen threats.
- Formulated an collision-aware observation urgency inference method that transforms spatial uncertainty and trajectory proximity into a time-varying urgency map for sensing prioritization.
- Designed a fast gradient-based optimization scheme (< 10 ms) that optimizes UAV trajectory and camera orientation under sensing constraints.
- Demonstrated improved obstacle awareness, detecting dynamic obstacles 2.8 s earlier and achieving safer navigation in cluttered, occluded environments compared to baselines.

Dynamic Visual SLAM using Hybrid Segmentation and Optical Flow

Robotics, University of Michigan, Ann Arbor

02/2025 - 04/2025

Advisor: Maani Ghaffari

- This project aims to enhance the robustness of visual SLAM in dynamic environments by masking moving regions using real-time segmentation and optical flow.

- Utilize YOLOv11-seg and FastSAM for real-time instance segmentation, and identify dynamic regions by analyzing differences in optical flow between segmented objects and the static background.
- Developed a real-time pipeline to improve ORB-SLAM3 performance in dynamic environments by excluding unstable feature points using generated dynamic masks. The method was validated on the TUM and Bonn benchmark datasets.

Obstacle-Aware Path Planning for Robotic Arm

Institute of Marine Equipment, SJTU

06/2023 - 07/2023

Advisor: Yanjun Wang

- This project focuses on implementing a collision-free path planning algorithm for a robotic arm, given predefined start and goal positions.

- Develop both forward and inverse kinematics formulations using Denavit–Hartenberg (DH) parameters, and implement collision detection for the robotic arm using a simplified cylindrical approximation model.
- Developed an obstacle-aware path planning approach by implementing the Rapidly-exploring Random Tree (RRT) algorithm in the robot arm's joint space, validated through simulations in CoppeliaSim.

WORK EXPERIENCE

Instructional Assistant

Fall 2025

University of Michigan

Duties include: Tutored students in "Mathematics for Robotics" during scheduled help sessions.

Supervisor: Dimitra Panagou

Robotics Research Intern

Summer 2023

Institute of Marine Equipment, SJTU

Duties include: Conducted a short-term research project on robotic arm path planning and motion algorithms.

Supervisor: Yanjun Wang

TECHNICAL SKILLS

Programming: Python, C++, MATLAB

ML Frameworks: PyTorch, MuJoCo

DevOps: Ubuntu, Git, Docker

Robotics: ROS, MoCap

Writing: LaTeX, Illustrator